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Semi-infinite double rows of vortices are used to study the periodic wake of both 
oscillating and stationary two-dimensional bodies immersed in a uniform in- 
compressible stream. Analytical expressions for the induced velocities on the 
body, for trails with constant spacing, which are valid for small values of the 
oscillation amplitude are presented while, for the general case of vortex shedding, 
an iterative procedure for the representation of trails of variable spacing is 
developed and used. Vortex streets due to  oscillating bodies are obtained as 
a function of three non-dimensional parameters: the Strouhal number (initial 
spacing ratio), a non-dimensional vortex strength and the downstream spacing 
ratio. Criteria establishing when such trails are expected to widen, become 
narrow or stay of constant width are presented, as well as expressions for the 
induced velocities. 

The trails and their induced velocities enable the calculation of the vortex 
strength from measurable quantities. Thus they can serve as a method for 
estimating the hydrodynamic forces on the airfoil due to large amplitude oscilla- 
tions, such as those observed in the propulsive movements of fish and cetaceans, 
as well as the small amplitude oscillations due to hydroelastic interactions. 

1. Introduction 
Most existing unsteady potential aerodynamic wing theory is based upon the 

assumption of small perturbations, with the subsequent linearization of the 
equations of motion. In  these models (Robinson & Laurmann 1956) the vorticity 
shed from the moving airfoil is assumed to stay in the form of a plane sheet of 
velocity discontinuity trailing back from the instantaneous position of the airfoil 
trailing edge. This last assumption has long been known to be inaccurate (Rosen- 
head 1931), and experimental studies of oscillating airfoils (Bratt 1953; Clauss 
1968;Wood &Kirmani 1970) haveshownthat the vortex sheet produced in many 
cases rolls up into two rather regular rows of alternating discrete vortices of 
opposite sign for wide ranges of frequencies and Rleynolds numbers. Some of the 
more recent advanced nonlinear potential flow studies (Giesing 1968; Djojodi- 
hardjo & Widnall 1969) include these rolling-up effects. These are numerical 
works and are mainly designed for transient effects. An understanding of the 
wake flow pattern of an oscillating body is important as a method of obtaining 
the instantaneous circulation on the body and as a check on the assumption of 
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FIGURE 1.  Schematic representation of vortex trails shed behind (a) an oscillating airfoil 
and (€11 a bluff stationary body in a uniform incompressible inviscid stream. 

classical theoretical calculations, in work on flutter, and in the analysis of 
oscillating vane propulsive systems, such as are used by many types of fish. 

Vortex trails observed behind oscillating vanes with sharp trailing edges are 
reminiscent of the staggered K&rm&n vortex street (Milne-Thomson 1968; Lamb 
1945), except for two characteristics (see figure 1) .  

(i) The sense of each vortex in the trail is opposite to  that of the K&rm&n 
‘natural’ shedding case. 

(ii) Unlike the theoretical infinite street, the trail is at  most of semi-infinite 
length, being shed from a certain region of the flow field. 

The vortex trails shed from such oscillating foils will be designated as ‘thrust- 
type ’ trails as the induced momentum produces thrust upon the disturbing body 
initiating the trail, while the vortex streets shed from stationary bodies produce 
drag, and will be called ‘drag-type’ (see figure 1). Trails of the latter type are 
also produced by oscillating blunt-based airfoils (Wood 197 1) .  Theoretical studies 
of the K&rm&n vortex street have almost all been based upon the assumption of 
the existence of rows of infinite length, with the single exception of Synge (1926), 
who used semi-infinite rows to obtain the drag force on a cylinder. All these 
analyses have assumed trails of constant spacing, which implies that the vertical 
induced velocity on each vortex is zero. This is not correct for the vortices closest 
to the front end of the row, which actually have the largest influence upon the 
exciting body. As a result, the spacing of vortices in the trail varies as one moves 
along the trail away from the initial disturbance. 

In  the present work, some properties of semi-infinite double vortex trails with 
variable spacing in an inviscid fluid are studied, with possible implicationsfor the 
circulation and forces induced on the vanes producing the streets. It is shown that 
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only for small values of the final spacing ratio does the assumption of constant 
spacing lead to a good approximation of the induced velocities. 

Comparison of the results of present theory with experimental results shows 
good qualitative agreement for the shape of the ensuing trails. More quantitative 
comparison was hampered by lack of data on certain parameters, but the present 
results are shown to fall within the range of experimentally measured data. 

2. Method of analysis 
Consider first a semi-infinite single row of vortices each of strength k, located 

at  the points (2na, 0) ,  where, n = 0, 1,2,  ..., co, in the 2, y plane. The complex 
potential of this array is 

Q = ik[ln z + In (z - 2a) + . . . + In ( z  - 2na) + . . .I. (1) 

The complex conjugate velocity induced on the leading vortex (at z = 0 )  is 

which is not bounded, as the harmonic series diverges. As a result, such a row 
could not exist by itself, as each member would be displaced very rapidly upon 
its formation, not permitting the establishment of the row. In  contrast, in an 
infinite row (Milne-Thomson 1968) there is no induced velocity on any of the 
vortices, as the remaining vortices may be grouped into equidistant pairs with 
cancelling induced velocities. For this case the complex potential can be ex- 
pressed as an infinite product of the type 

Taking now two rows of vortices of semi-infinite length, with vorticity of opposite 
sign, the most realistic case is that of alternating vortex position, i.e. each vortex 
of the upper row is situated opposite the centre of the distance between the two 
closest vortices of the lower row (see figure 1). 

The complex potential for this configuration is 

00 m 

Q = +ik ln(z-2na-ih)Tik C. ln(z-(2n-l)a+ih),  (4) 
n=l n=l 

where the upper signs describe the trail shed by an oscillating airfoil and the lower 
signs give the trail shed by a stationary bluff object; 2a and 2h are the horizontal 
and vertical spacings, respectively. 

The induced (conjugate) velocity at  the point z is 

Omitting the self-induced velocities, (5) describes an alternating series, for which 
the Leibniz test establishes conditional convergence. One of the properties of 
such series is that the value of the sum of an arbitrarily large number of terms 
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depends upon the order of summation. This fact causes no difficulty here, as the 
physical case described (vortex shedding from an obstacle, in a uniform stream) 
defines the order of summation, which is according to the distance of each 
vortex from the origin. 

Equation (5) can be rewritten as 

1 m 

w = T i k  
- (2% + 2) a - ih- 2 - ( ~ n  + 1) a + ih 

However, from Gradshteyn & Ryshik (1965, p. 944) we have 

where 

so that (9) 

where u, v are the x, y components of the induced velocity, and tabulated values 
of $ appear in Abramowitz & Stegun (1965). 

By applying (9) to the next vortex to be shed (at z = 0 + ih, say), one sees that 
it will be displaced both horizontally and vertically. On the other hand, a vortex 
far down the line is in a situation approaching that of an infinite double row, so 
that the vertical velocities on it vanish and the horizontal induced velocity is 
close to kn nh 

U, = & - tanh- 
2a a '  

where U' is the velocity of advance of the infinite KQrmAn trail (Milne-Thomson 
1968) and the signs stand for the same cases as in (4). 

From such considerations, one sees that semi-infinite double vortex rows will 
in general not have constant spacing. As a result, (9) can serve only as a first 
trial in a scheme of successive approximations. Nevertheless, it is extremely 
useful for obtaining a qualitative understanding of the behaviour of such trails and 
for defining parameters influencing this behaviour (see 6 3). 

More accurate expressions for the potential and induced velocity can be 
obtained by the following iterative process. Initially a trail with constant spacing 
is taken a.nd the perturbations in position calculated from 

where j is the index number of the iteration, T is the shedding period andxg), yg), 
uf) and vg) are those appearing in (a)-( 9). Having now found the positions of each 
of the vortices for the first iteration, the leading vortex is returned artificially 
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to the position (0, h) and the new positions xg) and 92) calculated again from ( 1  l), 
where now the velocities ugIl and v:Ll are obtained from 

by substituting j = 2. The induced velocities are not explicit functions of the 
time t but of the instantaneous position, so that, to evaluate the integrals in 
( 1 1 ) , we employ the approximation 

breaking the trajectory of each vortex during the half cycle into nz sections of 
equal duration for which the induced velocity is assumed constant. These 
velocities are obtained from 

The displacement of vort,ex n during each of the time streps p is given by 

(15) 

and from (1 1) xg!o = xiyl + &UT, y:!,, = - Yn-1. (i) (16) 

The perturbations in position from the initial ‘constant spacing’ trail were 
calculated using (11)-(16). This was continued till n = 20 or the perturbation 
was less than 0.5 % of the h a 1  spacing, whichever happened first. I n  the former 
case a nonlinear Shanks transformation was applied (Shanks 1955) to the alter- 
nating series obtained from the vertical position of the 20 vortices calculated, 
to get the final vertical position. The positions of the vortices were then taken 
as the basis of the next iteration. The number m of steps in (13) and the following 
analysis is arbitrary. The final positions of individual vortices were taken as 
fulfilling the condition 

where E is arbitrarily small (taken as 0.005 in the present calculations). The 
relative differences between final positions obtained when m = 5 and m = 10 
were never larger than 1 yo for the cases checked (h/a G I). 

The initial horizontal and vertical spacings are defined as 2d and 2b, while 
the final (far from the vortex-producing disturbance) values are 2h and 2a 
respectively . 

In  the case of a cylinder of diameter D shedding a vortex trail 

2d = U T ,  2b = D (approximately) (18) 

and X = D/UT N bid, (19) 

where U is the free-stream velocity. For an oscillating airfoil b is the distance 
from the point of shedding to the oscillation centre-line, and (19) is no longer an 
approximation. 
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3. Results and discussion 
3.1, Trails with constant spacing 

It has been shown in $ 2  that this type of semi-infinite trail is not likely to be 
obtained from natural shedding situations, but it still has value as a first approxi- 
mation. It should be as least as good a description of the flow field as the KArmBn 
infinite trail, which also is of constant spacing. For such trails the induced velocity 
components are given by (9).  In this case, the spacings are a and h respectively. 
The velocity induced on the curve 

y = Acos(nz/a) (-*a 6 x: 6 6.) (20) 

is the velocity induced on an oscillating foil during one-halfof its cycle, assuming 
now that the airfoil may be represented by a concentrated vortex (the 'bound' 
vortex). The velocity induced during the other half of the cycle is obtained by 
use of the symmetry properties of the double row, the only difference being 
a change of sign in the v (the vertical component). Hence, calculation of the 
induced velocity on the half-cycle described by (20) is sufficient to obtain 
a mapping of induced velocities on the bound vortex at  any time. These velocities 
are important, as they contribute to the circulation around the airfoil, i.e. the 
strength of the bound vortex. 

When looking at periodic vortex shedding from a stationary body with 
separated flow, the induced velocity is the cause of the net circulation around the 
body, causing the asymmetric shedding. From now on, the discussion will be 
for oscillating airfoils, unless specifically mentioned otherwise. 

The point (0, h) is especially interesting as this is the point of appearance of the 
next vortex. Leaving out the possible physical mechanism producing the vortex 
trail for the moment, the velocity induced on this vortex leads to an under- 
standing of the possible distortions of the trail. 

For this point, the infinite sums in (4) and ( 5 )  are simplified, giving 

k "  2n- 1 
%,h) = - an=1 c (2n- i)'+ (2h/a)' 2n 

The horizontal velocity component is, by symmetry considerations of the infinite 
K k m h  trail, 

u ( ~ , ~ )  = &UK = $r(k /a)  tanh (vhla). ( 2 2 )  

The vertical component is more complicated, and after some manipulation can 
be written as 

N a ,  

j=ln=l 

1 (2h/a)ZN+2 
+ ( - 1 ) N  5 

n=1(2%- 1)2N+1[(2n- 1)2+(2h/a)2] ' (23) 



Semi-inJinise vortex trails 685 

and the value of the first summation term can be represented by Riemann zeta 
functions. When h/a -+ 0, which for finite free-stream velocity and oscillation 
frequency means vanishing amplitude, (22) and (23) give 

u = 0, v = (E/a)ln2 = (kf/U)2ln2. (24) 

The usual assumption for the small amplitude harmonic oscillation of an airfoil 
in unsteady aerodynamic theory is that each element of the wake stays exactly 
where it was shed, relative to the undisturbed flow (Robinson & Laurmann 1956). 
From (24), we see that this assumption is correct only for the horizontal (stream- 
wise) component. The vertical-induced velocity tends to a value proportional 
to the circulation, and the oscillation (shedding) frequency f, and inversely 
proportional to the free-stream velocity. This component causes the widening of 
initially very narrow trails and affects the circulation on the bound vortex by 
inducing an additional angle of incidence. It is useful to non-dimensionalize the 
velocity components by the following definitions : 

u’ = ua/k, v‘ = walk. (25) 

Using these definitions in conjunction with ( 2 2 )  and (23)) the effect of changing 
the spacing ratio h/a is now examined. For h/a < 1, which is of interest in aero- 
elastic studies, 

ui0, h) N anz h/a (26) 

and 

or (27) 

where c is the Riemann zeta function. The formulation of (23) was required to 
obtain the vertical component of velocity as a function of ascending powers of 
the spacing ratio and tabulated functions. This approach is rapidly convergent 
for 2hla < 1. For general h/a it is simpler to calculate the velocity directly from (9)’ 
which, however, is not explicitly dependent upon the spacing ratio, while the 
form of (27) is more useful for the small values of h/a encountered in practice 
(Wood & Kirmani 1970; Bratt 1953; also see figure 2 of this paper). 

From (27) we see that v;,,~) drops by only 1 yo when 0 < h/a < 0.04. This leads 
to a concept of a ‘linear’range of spacing ratios in which the vertical component 
is approximately constant, while the horizontal component increases linearly 
with the spacing ratio. In this range, the results are approximately valid for 
trails with variable spacing too. Increasing the value of h/a causes a monotonic 
increase in u ; ~ , ~ )  and a decrease in v;,,,~) (see figure 2)) which for a certain value of 
h/a becomes negative. Trial-and-error calculations have determined this value 
as h/a = 0.637 to three-figure accuracy, which to the same accuracy is equal to 
2/n. No special significance is attached to this fact, which may be a hint to some 
as yet unnoticed relationship. A further increase in h/a causes a sharp continuing 
decrease in the signed value of v U ; , , ~ )  while u;,,~) tends to the value inkla (from 
equation (22)). The main conclusion to be drawn from this dependence upon the 
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FIGURE 2. Horizontal and vertical non-dimensional induced velocities on the leading 
vortex as a function of the spacing ratio, for trails with constant spacing. The broken 
lines show the approximate solution for small h/a. 

ratio h/a is that, for trails with variable spacing ratios, when the initial ratio is 
less than a certain (as yet unknown) value, the vertical spacing will tend to 
increase, while for larger ratios, it  will decrease. The streamwise spacing on the 
other hand always increases owing to the velocities induced by the trail. Also, 
when the spacing ratio increases, the feedback effect of the wake on the bound 
circulation (and the forces) decreases rapidly, after an initial small range in 
which it is almost constant. This results from the relationship between the 
induced angle of incidence and the induced velocities: 

ai = arctan [w/( U + u)]. (28) 

Next, a rather crude approximation was employed to obtain a better idea of the 
transition from widening to narrowing vortex streets. Here it was assumed that 
one vortex only was free to move, according to the induced velocity upon it, 
the others being constrained to stay in the regular street with constant spacing. 
Not surprisingly, the results of this calculation showed that when h/a N 0.288 
the movable vortex returned to its place in the trail, while it moved outwards 
for smaller ratios and inwards for larger ratios. This analysis is similar to the 
KkmBn stability analysis, which shows that for h/a 21 0.281 initial displacements 
of vortices are damped out to the first order, so that the small difference in the 
‘critical’ value of the spacing ratio is probably due to a combination of computa- 
tional errors, and the slightly different appvoach. 

3.2. Trails with variable spacing 

The velocities induced on the individual vortices cause the vertical and horizontal 
spacings to change from the ones set by the amplitude and frequency of oscilla- 
tion of the airfoil and the free-stream velocity. These changes in shape of the 
vortex trail depend on all the factors mentioned as well as the magnitude of the 
vorticity, so that general analytical expressions describing the form of the trail 
would be extremely complicated. Even numerical calculations are difficult 
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because of the infinite number of vortices, the feedback effect of the positioning 
of these vortices upon the strength, and the implicit relations between the in- 
duced velocities and time. 

Define the differences between the final (far from the flow disturbance, when 
the vortex trail has become of constant spacing) and initial spacings as 

Ax = a-d, Ay = h-b. (29) 

Under the same assumption that the trail finally reaches a state of constant 
spacing, the induced velocity will approach the value obtained from classical 
infinite double vortex rows, so that 

a = d+iUKT 

a = iUT(1-k uK/u), and from (18) 

so, from (lo), 

and a =  )UT[lk(l+h(v,h/a))*]. (33) 

where h = 4natanh(nh/a) and u = k/U2T.  But the spacing has to be non- 
negative, so that only the first solution is of interest, as h is non-negative: 

a = $LIT[1+(1+h)+]. (34) 

For thrust-type vortex streets therefore, the horizontal spacing far from the 
initial disturbance is always larger than the initial spacing. From (29) 

or 

h b + A y  
a *UT[l+(l+h)*] 
- =  

Ay l h l + ( l + A ) +  
- 1, - =-- 

b S a  2 

(35) 

from which the change in vertical distance between the rows, from the initial 
shedding distance, can be found. The most interesting question arising here is 
when is this change positive, and when negative. Trails of equal initial and final 
spacing are those for which Ay = 0 in (36), i.e. 

S = &@/a) [I + (1 +A)+], (37) 

or by using the fact that h = b in this case, (33) is retrieved. Thus, for each value 
of v and h/a, a trail with b = h (which does not mean constant spacing) can be 
found. These values lie on a curved surface whose projection on the X, h/a plane 
is shown in figure 3. This surface exists only in the first octant. Points below (to 
the right) the surface describe vertically widening trails, while points above the 
surface stand for contracting trails (see also figures 4 and 5). 

The practical significance of expressions like (33) and (36) lies in the possibility 
of determining the vortex strength by means of measurable quantities such as 
the initial and final spacings of the vortices, the frequency and the free-stream 
velocity. This in turn would lead to an estimate for the upper bound of the circula- 
tion around the body. In  actual vortex street shedding situations this has been 
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FIGURE 3. The Strouhal number (initial spacing ratio) as a function of the h a 1  spacing 
ratio for trails with equal initial and h a 1  vertical spacings. For each value of u, points 
to the right of the relevant curve represent widening trails, while points to the left des- 
cribe trails which become narrower. 

FIGURE 4. Vortex trail with S = u = k/U2T = 1. x , position of vortex in actual 
trail; 0, position of vortex in constant-spacing trail with initial values of the horizontal 
and vertical spacings. 

shown (Wood & Kirmani 1970) to be up to 50% higher than the circulation 
predicted by ‘ classical’ unsteady airfoil theory. Existing experimental data (see 
3 1) do not include all the information required for such calculations (specifically 
the initial vertical spacing is missing), so that a full comparison cannot be made 
at present. Taking Wood & Kirmani’s results, the circulation was calculated by 
(36) and was found to agree with their values of the circulation (which they 
obtained by integrating tangential velocity components) for instants of separa- 
tion lagging by 20-50’ behind the instant of maximum amplitude. In comparison, 
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FIGURE 5. (u) Widening thrust-type trail with S = 0-335, CT = 1 (h/u ~ l i  0.305). (b)  Narrow- 
ing thrust-type trail with S = 0.6, u = 0-1 (hlu = 0.302). See figure 4 for definition of 
symbols. 

the aforementioned authors mention measuring separation points at  18-108' 
after the displacement peak. 

Finally, computations of the actual shape of some thrust-type vortex trails, 
by use of (1 1)-( 16), are shown in figures 4 and 5 .  The horizontal spacing increases 
very rapidly to its final value, the induced velocity reaching within 5 yo of its 
final value at  about n = 6 while the vertical spacing oscillates around the final 
value, approaching it rather slowly, being a harmonic series. Still, the final 
distance between rows in the trial may be obtained accurately from rather few 
vortex positions by means of the Shanks transformation mentioned before. This 
may be useful for future interpretation of experimental results by the methods 
presented here, as the usual experimentally observed vortex trail can be observed 
for relatively short distances behind the body. The trails in figures 4 and 5 all 
become wider initially, narrowing again at some distance from the airfoil towards 
the final regular pattern. Such behaviour is clearly seen in Bratt's (1953) smoke 
visualization of the wake of an oscillating airfoil. 

The asymmetry in figures 4 and 5 is due to the fact that these are 'snapshots' 
of the trail at  a certain time. Looking at  the same trails one-half cycle later would 

44 F L M  54 
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result in a mirror image of each figure reflected in the x/a axis (but with un- 
changed signs of vorticity ) . 

4. Conclusion 
The description of the wake of an oscillating vane by a semi-inhite double row 

of inviscid vortices presented here is suggested as a step towards a method of 
predicting the hydrodynamic forces on an airfoil performing finite amplitude 
oscillations, in an inviscid incompressible flow. This can be described formally as 
the approximation of the integral equation describing the mutual influence be- 
tween the airfoil and the wake by an infinite series. 

The semi-infinite trail used here is much more realistic than the usual assump- 
tion of infinite length, leading to changes in both vertical and horizontal spacing 
of the vortices as one advances down the street. The influence of these differences 
appears mainly in the velocities induced upon the exciting vane, for, far down- 
stream the wake approaches the condition described by an infinite trail. The 
mean thrust (or drag) can therefore be calculated by KkmBn’s equations for the 
force (Milne-Thomson 1968) and the feedback effect on the vane appears in the 
vortex strength, and spacing ratio. Such results would be applicable to the analysis 
of the propulsive forces produced by scombroid fish and cetaceans who are 
propelled by large amplitude pitching and heaving oscillations of a ‘lunate’ tail 
fin of high aspect ratio. 

The author wishes to thank Professor Sir James Lighthill for useful discussion 
and comments. 
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